Blog

Glass Fibre Europe publishes updated continuous filament GFRP life cycle assessment | CompositesWorld

Together, the two Spanish companies will outline plans for eVTOL aircraft and operations integration in Europe and Latin America to ensure compatible interaction and maximize aircraft performance.

Following DOA approval, Lilium shifts from the design phase to industrialization, including fuselage matching and joining and a ramp-up of parts production from Tier 1 aerospace suppliers. 316 Stainless Steel Flange Nuts

Glass Fibre Europe publishes updated continuous filament GFRP life cycle assessment | CompositesWorld

The composites-intensive electric aircraft was purchased to meet the airline’s goal of flying a commercial demonstrator by 2026.

The $37 million contract will enable Piasecki to demonstrate its ARES tilt-duct VTOL aircraft and hydrogen fuel cell propulsion technologies.

Design Organization Approval makes Lilium qualified to design and hold a type certificate for aircraft developed according to the EASA’s SC-VTOL safety objective rules.

The two-seat EL-2 Goldfinch is a blown-lift aircraft filling the gap for air travel routes between 50-500 miles. Certification and entry into service is targeted for 2028.

Combined LSAM and five-axis CNC milling capabilities will optimize D-Composites’ production services, flexibility and cut time and cost for composite tooling manufacture.

Evaluation of CFRTP m-pipe through Element’s U.K. facility aims to qualify the system for new operating environments.

Innovative prepreg tooling is highly drapable, capable of forming complex carbon fiber tooling shapes, in addition to reducing through thickness porosity and only requiring one debulk during layup.

Simutence and Engenuity demonstrate a virtual process chain enabling evaluation of process-induced fiber orientations for improved structural simulation and failure load prediction of a composite wing rib.

3D imaging and analysis capability illustrates detailed, quality characterization and performance simulation of composites and other advanced materials that properly captures the as-manufactured component.

Latest version of comprehensive simulation software speeds up computations and introduces surrogate model functionality.

New support will enable climate-friendly, high-performance and aesthetically pleasing interiors made from ekoa natural fiber composite surfaces and panels.

Holding the new Guinness World Record at 11.98 meters, the 3D-printed composite water taxi used a CEAD Flexbot to print two hulls in less than 12 days.

Torayca-based aerospace components have successfully been repurposed into the Lenovo ThinkPad X1 Carbon Gen 12, highlighting the ongoing application of recycled composites.  

Novel method for fiber-to-fiber recycling of used textiles and a low-cost, cost-effective precursor for carbon fiber manufacture earn 2023 Walter Reiners Foundation Awards.

Components critical to a bobsled’s functionality — push handles, hand grips and seats — were tailored from Windform materials, heightening both performance and safety for athletes’ racing in the 2026 Winter Olympics.

The inaugural CW From the Archives revisits Sara Black’s 2007 story on out-of-autoclave infusion used to fabricate the massive composite upper cargo door for the Airbus A400M military airlifter.

Holding the new Guinness World Record at 11.98 meters, the 3D-printed composite water taxi used a CEAD Flexbot to print two hulls in less than 12 days.

The novel large-format Flexbot Research XL platform enables TGS to offer 3D printing services, making use of a versatile composite material range.

Startup Fited and Brightlands Materials Center have developed a lighter weight, thinner CFRP corrective brace, including pressure sensors made from continuous carbon fibers.

Components critical to a bobsled’s functionality — push handles, hand grips and seats — were tailored from Windform materials, heightening both performance and safety for athletes’ racing in the 2026 Winter Olympics.

The inaugural CW From the Archives revisits Sara Black’s 2007 story on out-of-autoclave infusion used to fabricate the massive composite upper cargo door for the Airbus A400M military airlifter.

Combined LSAM and five-axis CNC milling capabilities will optimize D-Composites’ production services, flexibility and cut time and cost for composite tooling manufacture.

CW explores key composite developments that have shaped how we see and think about the industry today.

Knowing the fundamentals for reading drawings — including master ply tables, ply definition diagrams and more — lays a foundation for proper composite design evaluation.

As battery electric and fuel cell electric vehicles continue to supplant internal combustion engine vehicles, composite materials are quickly finding adoption to offset a variety of challenges, particularly for battery enclosure and fuel cell development.  

Performing regular maintenance of the layup tool for successful sealing and release is required to reduce the risk of part adherence.

Increasingly, prototype and production-ready smart devices featuring thermoplastic composite cases and other components provide lightweight, optimized sustainable alternatives to metal.

Interest in higher performance and more sustainability drive new composite materials innovations in sporting goods and other consumer products.

Manufacturers often struggle with production anomalies that can be traced back to material deviations. These can cause fluctuations in material flow, cooling, and cure according to environmental influences and/or batch-to-batch variations. Today’s competitive environment demands cost-efficient, error-free production using automated production and stable processes. As industries advance new bio-based, faster reacting and increased recycled content materials and faster processes, how can manufacturers quickly establish and maintain quality control? In-mold dielectric sensors paired with data analytics technology enable manufacturers to: Determine glass transition temperature in real time Monitor material deviations such as resin mix ratio, aging, and batch-to-batch variations throughout the process Predict the influence of deviations or material defects during the process See the progression of curing and demold the part when the desired degree of cure, Tg or crystallinity is achieved Document resin mix ratios using snap-cure resins for qualification and certification of RTM parts Successful case histories with real parts illustrate how sensXPERT sensors, machine learning, and material models monitor, predict, and optimize production to compensate for deviations. This Digital Mold technology has enabled manufacturers to reduce scrap by up to 50% and generated energy savings of up to 23%. Agenda: Dealing with the challenge of material deviations and production anomalies How dielectric sensors work with different composite resins, fibers and processes What is required for installation Case histories of in-mold dielectric sensors and data analytics used to monitor resin mixing ratios and predict potential material deviations How this Digital Mold technology has enabled manufacturers to optimize production, and improve quality and reliability

SolvaLite is a family of new fast cure epoxy systems that — combined with Solvay's proprietary Double Diaphragm Forming technology — allows short cycle times and reproducibility. Agenda:  Application Development Center and capabilities Solutions for high-rate manufacturing for automotive Application examples: battery enclosures and body panels

OEMs around the world are looking for smarter materials to forward-think their products by combining high mechanical performance with lightweight design and long-lasting durability. In this webinar, composite experts from Exel Composites explain the benefits of a unique continuous manufacturing process for composites profiles and tubes called pull-winding. Pull-winding makes it possible to manufacture strong, lightweight and extremely thin-walled composite tubes and profiles that meet both demanding mechanical specifications and aesthetic needs. The possibilities for customizing the profile’s features are almost limitless — and because pull-winding is a continuous process, it is well suited for high volume production with consistent quality. Join the webinar to learn why you should consider pull-wound composites for your product. Agenda: Introducing pull-winding, and how it compares to other composite manufacturing technologies like filament winding or pultrusion What are the benefits of pull-winding and how can it achieve thin-walled profiles? Practical examples of product challenges solved by pull-winding

Composite systems consist of two sub-constituents: woven fibers as the reinforcement element and resin as the matrix. The most commonly used fibers are glass and carbon, which can be processed in plane or satin structures to form woven fabrics. Carbon fibers, in particular, are known for their high strength/weight properties. Thermoset resins, such as epoxies and polyurethanes, are used in more demanding applications due to their high physical-mechanical properties. However, composites manufacturers still face the challenge of designing the right cure cycles and repairing out-of-shelf-life parts. To address these issues, Alpha Technologies proposes using the encapsulated sample rheometer (premier ESR) to determine the viscoelastic properties of thermosets. Premier ESR generates repeatable and reproducible analytical data and can measure a broad range of viscosity values, making it ideal for resins such as low viscous uncured prepreg or neat resins as well as highly viscous cured prepregs. During testing, before cure, cure and after cure properties can be detected without removing the material from the test chamber. Moreover, ESR can run a broad range of tests, from isothermal and non-isothermal cures to advanced techniques such as large amplitude oscillatory shear tests. During this webinar, Alpha Technologies will be presenting some of the selected studies that were completed on epoxy prepreg systems utilizing ESR and how it solves many issues in a fast and effective way. It will highlight the advantages of this technique that were proven with the work of several researchers. Moreover, Alpha Technologies will display part of these interesting findings using the correlations between the viscoelastic properties such as G’ and mechanical properties such as short beam shear strength (SBS).

Surface preparation is a critical step in composite structure bonding and plays a major role in determining the final bonding performance. Solvay has developed FusePly, a breakthrough technology that offers the potential to build reliable and robust bonded composite parts through the creation of covalently-bonded structures at bondline interface. FusePly technology meets the manufacturing challenges faced by aircraft builders and industrial bonding users looking for improved performance, buildrates and lightweighting. In this webinar, you will discover FusePly's key benefits as well as processing and data. Agenda: Surface preparation challenges for composite bonding FusePly technology overview Properties and performance data

The incorporation of EMI shielding into composites is necessary in a wide range of applications — such as electronics and battery enclosures for AAM, automotive and aerospace — where EMI could interfere with the operation of the device, vehicle or aircraft, ultimately compromising security and control. TFP’s conductive nonwoven materials provide a solution, possessing a combination of properties that make them highly infusible, flexible, lightweight and an effective EMI shield. This combination allows them to overcome challenges in both application and process that more traditional substrates such as films, foils and paints struggle to achieve. In this webinar, Dr. Mark James will introduce TFP’s conductive nonwovens, their lightweight structure and EMI shielding capability. He will discuss how they are easily incorporated into composites to impart this functionality to the surface of a part, with some typical examples. Mike Campbell and Adam Halsband will then provide a case study on a new development for TFP materials as an EMI enhanced SMC compound. This compound is designed as a scalable, cost-effective solution for high throughput BEV applications, such as battery enclosures. Agenda: An introduction to TFP’s conductive nonwovens, their structure and manufacture The key physical properties and how they are tailored to suit end-use requirements How conductive nonwovens can be used effectively in a variety of applications A case study on the development and use of TFP’s veils in an EMI enhanced SMC compound for BEV applications

The annual Conference on Composites, Materials, and Structures (also known as the Cocoa Beach Conference) is the preeminent export controlled and ITAR restricted forum in the United States to review and discuss advances in materials for extreme environments. The Conference started in the 1970s as a small informal gathering for government and industry to share information on programs and state-of-the-art technology. Attendance has grown to nearly 500 people while preserving this same objective to share needs and trends in high-temperature and extreme environment materials, and the latest information on advanced materials and manufacturing processes. The five-day conference program includes two to three parallel sessions per day on topics including thermal protection materials, ceramic matrix composites, carbon-carbon materials, ballistic technologies, hypersonics, and gas turbine engines. Attendees are engineers, scientists, managers, and operational personnel from the turbine engine, aviation, missiles and space, and protective equipment communities. These communities include the Navy, Air Force, Army, MDA, NASA, DARPA, FAA, DOE, engine manufacturers, missile and aircraft manufacturers, commercial space companies, and material and component suppliers. The Conference will be held in St. Augustine again for 2024! Participation is limited to U.S. Citizens and U.S. Permanent Residents only with an active DD2345 certification.

The 48th International Conference & Exposition on Advanced Ceramics & Composites (ICACC 2024) will be held from Jan. 28–Feb. 2, 2024, in Daytona Beach, Fla. It is a great honor to chair this conference, which has a strong history of being one of the best international meetings on advanced structural and functional ceramics, composites, and other emerging ceramic materials and technologies.

The Transformative Vertical Flight (TVF) 2024 meeting will take place Feb. 6–8, 2024 in Santa Clara, California, in the heart of Silicon Valley and will feature more than 100 speakers on important progress on vertical takeoff and landing (VTOL) aircraft and technology. 

The Program of this Summit consists of a range of 12 high-level lectures by 14 invited speakers only. Topics are composite related innovations in Automotive & Transport, Space & Aerospace, Advanced Materials, and Process Engineering, as well as Challenging Applications in other markets like Architecture, Construction, Sports, Energy, Marine & more.

JEC World in Paris is the only trade show that unites the global composite industry: an indication of the industry’s commitment to an international platform where users can find a full spectrum of processes, new materials, and composite solutions.

Charting the Skies of Tomorrow: The Sustainable Aviation Revolution Welcome to a new era of air travel where innovation meets sustainability. Electric, hybrid-electric and hydrogen-powered aircraft represent a promising path to reach climate neutrality goals, with the aviation industry and governments jointly pushing boundaries to bring disruptive aircraft into service by 2035. From cutting-edge technologies to revamped regulations and greener airports, the pursuit of sustainable aviation requires unparalleled collaboration throughout the whole aviation value chain and ecosystem. Join us at the Clean Aviation Annual Forum from 5 until 6 March 2024, as we navigate towards cleaner skies together.

Thousands of people visit our Supplier Guide every day to source equipment and materials. Get in front of them with a free company profile.

Initial demonstration in furniture shows properties two to nine times higher than plywood, OOA molding for uniquely shaped components.

The composite tubes white paper explores some of the considerations for specifying composite tubes, such as mechanical properties, maintenance requirements and more.

Foundational research discusses the current carbon fiber recycling landscape in Utah, and evaluates potential strategies and policies that could enhance this sustainable practice in the region.

In its latest white paper, Exel navigates the fire, smoke and toxicity (FST) considerations and complexities that can influence composites design.

New white paper authored by Eike Langkabel, Sebastian de Nardo, and Jens Bockhoff, examines the best resin formulations for composites used in automotive part production, both structural parts and body panels.

Tension control plays a vital role in composites manufacturing in order to achieve automated processing, continuous processing, reduced scrap, increased product quality, and more, says a new white paper released by The Montalvo Corp.

Austrian research institute Wood K plus makes 95% silicon carbide ceramics more sustainable (>85% bio/recycled content), enables 3D shapes via extrusion, injection molding and 3D printing.

Thermoplastic polymer resin was designed to tackle distinctive industry challenges of large-scale 3D printing while also assisting with sustainability initiatives.

The MB9, representing a combination of high performance and eco-conscious materials use, will be commercially available in time for the 2024 sailing season.

For 42 months, the Aitiip Technology Center will coordinate the EU-funded project to design a new range of intermediate materials, such as pellets or resin-impregnated carbon fibers, which will be used to manufacture more sustainable final products.

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

The German Institutes of Textile and Fiber Research are targeting more sustainable carbon fiber via low-pressure stabilization and bio-based precursors, and working with Saint-Gobain to commercialize oxide ceramic fibers for CMC.

During CW Tech Days: Thermoplastics for Large Structures, experts explored the materials and processing technologies that are enabling the transition to large-part manufacturing.

This CW Tech Days event will explore the technologies, materials, and strategies that can help composites manufacturers become more sustainable.

Explore the cutting-edge composites industry, as experts delve into the materials, tooling, and manufacturing hurdles of meeting the demands of the promising advanced air mobility (AAM) market. Join us at CW Tech Days to unlock the future of efficient composites fabrication operations.

In the Automated Composites Knowledge Center, CGTech brings you vital information about all things automated composites.

Closed mold processes offer many advantages over open molding. This knowledge center details the basics of closed mold methods and the products and tools essential to producing a part correctly.

CompositesWorld’s CW Tech Days: Infrastructure event offers a series of expert presentations on composite materials, processes and applications that should and will be considered for use in the infrastructure and construction markets.

CW’s editors are tracking the latest trends and developments in tooling, from the basics to new developments. This collection, presented by Composites One, features four recent CW stories that detail a range of tooling technologies, processes and materials.

The composites industry is increasingly recognizing the imperative of sustainability in its operations. As demand for lightweight and durable materials rises across various sectors, such as automotive, aerospace, and construction, there is a growing awareness of the environmental impact associated with traditional composite manufacturing processes.

CompositesWorld’s CW Tech Days: Infrastructure event offers a series of expert presentations on composite materials, processes and applications that should and will be considered for use in the infrastructure and construction markets.

Explore the cutting-edge composites industry, as experts delve into the materials, tooling, and manufacturing hurdles of meeting the demands of the promising advanced air mobility (AAM) market. Join us at CW Tech Days to unlock the future of efficient composites fabrication operations.

Thermoplastics for Large Structures, experts explored the materials and processing technologies that are enabling the transition to large-part manufacturing.

MVP's Automated Equipment: Revolutionizing Composites Part Production Through Filament Winding within CompositesWorld's CompositesWorld Collections Knowledge Center

Composites One Offers Manufacturing Efficiencies with Aerovac Kitting Solutions within CompositesWorld's CompositesWorld Collections Knowledge Center

A report on the demand for hydrogen as an energy source and the role composites might play in the transport and storage of hydrogen.

This collection features detail the current state of the industry and recent success stories across aerospace, automotive and rail applications.

This collection details the basics, challenges, and future of thermoplastic composites technology, with particular emphasis on their use for commercial aerospace primary structures.

This collection features recent CW stories that detail a range of tooling technologies, processes and materials.

An update to 2010 and 2015 data indicates that the European industry has reduced GHGs and primary energy consumed for continuous filament glass fiber and increased the circular economy.

Glass Fibre Europe (Brussel, Belgium), the European Glass Fibre Producers Association, has commissioned PwC – Sustainable Performance and Strategy to prepare a report on the life cycle assessment (LCA) of continuous filament glass fiber products. The new report is an update of two previous studies based on 2010 and 2015 data, and is publicly available on the European association website here.

The updated report is based on 2021 manufacturing data collected by PwC from 11 plants based in the European Union, the U.K. and Norway. It covers Glass Fibre Europe members’ production of chopped strands (dry and wet), direct rovings (single end rovings), assembled rovings (multi-end rovings), and mats (chopped strand mats, continuous filament mats). These continuous filament glass fiber products reportedly represent the majority of the reinforcement used in thermosetting and thermoplastic composites applications.

The analysis itself is a cradle-to-gate approach: According to Glass Fibre Europe, it is an assessment of the product life cycle impacts from the raw material extraction and manufacture (“cradle”) to the factory exit gate (i.e., before it is transported to the customer). The use and disposal phases of the products are not covered.

“For over a decade, Glass Fibre Europe’s LCA reports have contributed demonstrating the advantages of using composites as sustainable solutions. The report is now updated with the latest available data and methodology, and our member companies hope it will continue promoting the use of LCA methodology through the value chain,” Cédric Janssens, secretary general of Glass Fibre Europe, says. Glass Fibre Europe data is to be shared with the Association of the European Composites Industry (EuCIA, Brussels) for a future update of the “Eco Impact Calculator for composites,” an online tool calculating the environmental impact of composite products in Europe.

The report shows that, between 2015 and 2021, the European industry has reduced the primary energy consumed to produce 1 kilogram of continuous filament glass products by 8.1% on average and greenhouse gas (GHG) emissions by 3.2% on average. In terms of a circular economy, 44% of the industry’s production waste has been recycled in 2021, a large jump compared to the previous reference year, which was 26% in 2015.

“The European glass fiber industry has the ambition to become climate neutral by 2050 and that zero internal waste ends up in landfills,” Ludovic Piraux, president of Glass Fibre Europe, adds. “We know that the journey towards climate neutrality is very challenging but also exciting for our industry. It is therefore encouraging that the latest LCA report clearly shows that the investments made by the industry are paying off and that we could reduce the environmental footprint of our products.”

For additional resources related to this topic:

ESE Carbon Co.’s new carbon fiber wheel uses tailored fiber placement and custom presses to minimize waste and improve scalability.

Fast-reacting resins and speedier processes are making economical volume manufacturing possible.

Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Glass Fibre Europe publishes updated continuous filament GFRP life cycle assessment | CompositesWorld

Mobile Vsi Crusher CompositesWorld is the source for reliable news and information on what’s happening in fiber-reinforced composites manufacturing. Learn More